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Abstract. These are the author’s notes for a talk in the student seminar on∞-categories
organized by Jonas Heintze in the 2024/25 Winter Semester on the Yoneda lemma and

(co)limits.

Preliminaries

We largely follow Wagner’s notes [Wag24] in Sections 1 to 4, refering additionally
to [You] in Section 1. Section 5 provides an alternative (perhaps more conventional)
definition of limits and colimits.

Acknowledgements. I would be remiss not to express my thanks to Jonas for
giving me the opportunity to speak in his seminar. I also thank Sam Brinkerhoff
for his feedback on a preliminary version of Section 1.

I first learned much of this material from a course given by Prof. M. Hopkins while
visiting Harvard in the Fall of 2023, and have benefited greatly from conversations
about things ∞-categorical with numerous individuals – in particular the fellow
participants at the 2024 Park City Mathematics Institute and my classmates here
in Bonn.

1. An Application of Straightening-Unstraigtening: Stacks

The content of this section is an expanded and intiuitionistic variant of [Wag24,
§5.7] using [You]. Everything in this section should be taken with heavy skepticism.

We consider an application of the straightening-unstraightening correspondence
to the theory of algebraic stacks, a generalization of schemes. The reader unfa-
miliar with algebraic stacks should be able to replace “scheme” with a sufficiently
reasonable category of geometric spaces, or skip immediately to Section 2.

One place where stacks arise is in the consideration of moduli problems – ie. the
construction of parameter spaces for schemes of a certain sort. Let X be a scheme
and G a group scheme acting on X. One is often motivated to study the “quotient” Note that any dis-

crete group can be
made into a group
scheme by taking fi-
nite disjoint unions
of Spec(Z).

[X/G], but this may not exist in the category of schemes.
Grothendieck’s functor of points perspective tells us that we should instead study

the collection of maps to the scheme of interest – that is, functors SchOpp → Sets.
We can expand this to the study of functors SchOpp → Grpd, taking sets as groupoids
with the only morphisms given by identities. Whatever [X/G] may be, it admits a
morphism from X with fibers given by G-orbits and any Y → X descends to a map
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[X/G] if G acts trivially on Y and the map Y → X is G-equivariant. We would
thus expect a close connection between the following:

• [X/G].
• (Nice) schemes Y with a map to X “sufficiently compatible” with the G-
action.

• (Pre)sheaves on SchX “sufficiently compatible” with the G-action.

Taking the third perspective, the desiderata above is summarized in the construc-
tion of G-torsors, which we omit. As it turns out, for each X-scheme Y , there is a
groupoid of G-torsors over Y that assembles into a right fibration E → Sch/X – the
fiber over each X-scheme Y is the groupoid of G-torsors over Y . The straightening

of this right fibration is a functor SchOpp
/X → Grpd which produces the “correct”

representing functor for [X/G] whose Y -valued points are G-bundles on Y with an
equivariant map to X.More precisely, after

passing to nerves
and taking Grpd as
a (2, 1)-truncated
(∞, 1)-category.

2. The Yoneda Lemma

This section, modulo opposites, follows [Wag24, §5.3] fairly closely.
The 1-categorical Yoneda lemma tells us that for a category C and A ∈ C

that MorFun(COpp,Sets)(hA, F ) ↔ F (A) as sets. Running everything through the ∞-

dictionary, we would expect that MorFun(COpp,Ani)(hx, F ) ≃ F (x). This is in fact true,
but the proof is a fair amount more involved than in the 1-categorical case since
composition being “on the nose” forces certain choices that one can check gives
the right answer. Unfortunately the fact that compositions are only defined up to
homotopy in the quasicategorical setting means that the proof does not generalize.
The upshot is that the straightening-unstraightening correspondence gives the right
amount of rigidity for things to work out.

To show the Yoneda lemma, we will use the following result as a black box.

Lemma 2.1 ([Wag24, Thm. 5.19, Lem. 5.20]). Let C be a quasicategory, x ∈ C

and E → C any right fibration over C. The diagram

(2.1)

Fun(C/x,E) Fun(C/x,C)

E C

is homotopy Cartesian and restricts to the homotopy Cartesian diagram

(2.2)

coreFun(C/x,E) coreFun(C/x,C)

core(E) core(C)

on cores.

With everything we have set up so far, we can prove the Yoneda lemma.As always,
hx = MorC(−, x).

This here is the
opposite of [Wag24,
Thm. 5.19].
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Theorem 2.2 (Yoneda; [Wag24, Thm. 5.19]). Let C be a quasicategory, x ∈ C, and
F : COpp → Ani a functor. There is an equivalence of animae

MorFun(COpp,Ani)(hx, F ) −→ F (x).

Proof Outline. Let F be as above and p : E → C its (right/Cartesian) unstraight-
ening. Under this construction, the representable functor hx unstraightens to the
source functor s : C/x → C. We get equivalences of animae

MorFun(COpp,F )(hx, F ) ≃ MorRFib(C)([s : C/x → C], [p : E → C])

≃ MorCat∞/C
([s : C/x → C], [p : E → C])

where the inclusion RFib(C) → Cat∞/C is fully faithful. That RFib(C) →
Cat∞/C is fully faith-
ful is morally ex-
pected as being a
right fibration is a
property of quasicat-
egories over C.

By [Wag24, Corr. 5.15], the diagram

The point inclusion
on the right picks
out s.

(2.3)

MorCat∞/C
([s : C/x → C], [p : E → C]) ∗

MorCat∞(C/x,E) MorCat∞(C/x,C)

is homotopy Cartesian. By pasting with the square (2.2), we extend this to

MorCat∞/C
([s : C/x → C], [p : E → C]) ∗

core(E) core(C).

Right fibrations are in particular isofibrations (vis. [Ker24, Tag 01GP]) and thus Recall here
MorCat∞(−,−)
is computed as
coreFun(−,−) and
the right arrow picks
out x ∈ core(C).

core(E) → core(C) is a Kan fibration so by model category theory [Wag24, Cons.
5.12] – which states that pullbacks along diagrams with one leg a Kan fibration
agrees with the pullback in quasicategories – implies that MorFun(COpp,F )(hx, F ) is

given by the fibered product core(E)×core(C) {x}. We can then compute

core(E)×core(C) {x} ∼= core(E×C {x}) (2.1) restricts to (2.2)

∼= E×C {x} pullback over (2.3) pasted with (2.1)

≃ F (x)

as desired. ■

Moreover, this construction gives a fully faithful embedding of C into Fun(COpp,Ani).

Proposition 2.3 ([Wag24, Corr. 5.27]). The Yoneda embedding C → Fun(COpp,Ani)
by x 7→ MorC(−, x) is fully faithful.

Proof. Full faithfullness is a formal consequence of Theorem 2.2, but that this is
induced by the Yoneda embedding is not prima facie evident. Doing so requires the
twisted arrow construction of [Wag24, §5.21], which we omit. ■

https://kerodon.net/tag/01GP
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3. Adjoint Functors

This section follows [Wag24, §6.1] fairly closely.

Definition 3.1 (Right Adjoint Object; [Wag24, Def. 6.1]). Let L : C → D be
a functor of quasicategories and fix y ∈ D. An object x ∈ C is a right adjoint
object to y under L if there exists an equivalence MorC(−, x) ≃ MorD(L(−), y) in
Fun(COpp,Ani).

Definition 3.2 (Right Adjoint; [Wag24, Def. 6.1]). Let L : C → D be a functor
of quasicategories. A functor R : D → C is a right adjoint of L if there exists an
equivalence MorC(−, R(−)) ≃ MorD(L(−),−) in Fun(COpp ×D,Ani).As usual, we will

write L ⊣ R.
It turns out, we can assemble a right adjoint from right adjoint objects.

Lemma 3.3 (Pointwise Right Adjoints; [Wag24, Lem. 6.2]). Let L : C → D be a
functor of quasicategories. L admits a right adjoint R if and only if each y ∈ D

admits a right adjoint object x ∈ C.

We have already seen examples of adjoints.

Example 3.4 (Adjoints to Ani ↪→ Cat∞; [Wag24, Ex. 6.3]). The inclusion of animae
to ∞-categories admits both a left and right adjoint. The right adjoint is given by
the restriction to the core functor core : Cat∞ → Ani and the left adjoint is given by
localization at all non-isomorphisms.

This insight is
deeply indebted
to Mike Hopkins
who once remarked
in class something
along the lines of
“there are two types
of mathematical
objects – ones good
for mapping into
and ones good for
mapping out of.”

Remark 3.5. The adjunction behavior of Example 3.4 should not seem out of hand.

• (That core is a right adjoint) Forgetful functors are typically right adjoints.
• (That localization is the left adjoint) Localization/group completion has a
universal property of “mapping from.” Compare, for example, the universal
property of group completion or ring localization in the 1-categorical case.

As in the 1-categorical case, we can produce units and counits which turn out to
be necessary and sufficient for the existence of adjoints as in the case of 1-categories.

Proposition 3.6 ([Wag24, Cons. 6.4, Lem. 6.5]). Let L : C → D, R : D → C

be functors between quasicategories. L is a left adjoint to R if and only if there
are natural transformations u : idC ⇒ R ◦ L, c : L ◦ R ⇒ idD and equivalences
iL : L → L, iR : R → R making the diagrams

L L ◦R ◦ L R R ◦ L ◦R

L R

Lu

iL
cL

uR

iR
Rc

commute.

When working with ∞-categories it is often useful to restrict our attention to
functors between ∞-categories which are left (resp. right) adjoints. This leads to
the following definition.
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Definition 3.7 (CatL∞,CatR∞; [Wag24, Corr. 6.8]). The ∞-category CatL∞ (resp.

CatR∞) is the ∞-category by zero simplices ∞-categories and mapping animae the
core coreFunL(C,D) of those functors C → D which are left adjoints (resp. coreFunR(C,D)
which are right adjoints).

This yields the following – perhaps abtruse – result that will play an important
role in defining PrL which plays a key role in ∞-categorical algebra. This will be dis-

cussed in the talk
on presentable
and accessible ∞-
categories in a few
weeks.

In particular,
computations in
PrL are often done
“by passage to right
adjoints.”

Proposition 3.8 ([Wag24, Corr. 6.8 (b)]). There is an equivalence of ∞-categories

betewen CatL∞ and (CatR∞)Opp which it is the identity on objects and taking left
adjoints to their right adjoints.

4. (Co)Limits in ∞-Categories

This section follows [Wag24, §6.1] fairly closely.

Definition 4.1 (Colimit; [Wag24, Def. 6.9]). Let F : I → C be a functor between
quasicategories. A colimit colimF of F is a left adjoint object of F under the
constant functor C → Fun(I,C).

Ie. taking x ∈ C

to the functor that
returns x on each
i ∈ I. This is a
“left” thing because
colimits are good for
“mapping from” as
in the philosophi-
cal sidebar of Re-
mark 3.5 above.

Definition 4.2 (Limit; [Wag24, Def. 6.9]). et F : I → C be a functor between
quasicategories. A colimit limF of F is a right adjoint object of F under the
constant functor C → Fun(I,C).

Let us unpack why this is reasonable. Being a left adjoint object, dual to Defini-
tion 3.1, implies that there is an equivalence of animae

(4.1) MorC(colimF, y) ≃ MorFun(I,C)(F, const(y)).

Loosely, we can think of morphisms F → const(y) in Fun(I,C) as maps from F (i) →
y for each i ∈ I compatible with the morphisms in I – indeed, this is exactly what
happens in 1-categories (vis. eg. [Stacks, Tag 001I]). The equivalence of the left
and right hand side of (4.1) captures the desired universal property:

• Any compatible system of maps from the I-indexed diagram F in C to y
factors uniquely over the colimit colimF .

One readily makes an analogous argument for limits under passage to opposites,
realizing them as the “universal object over diagrams” in an appropriate sense. We
will provide a description of limits and colimits solidifiying this intuition in Section 5.

Adjoint functors behave with limits and colimits in an expected manner.

Lemma 4.3 (LAPC/RAPL; [Wag24, Lem. 6.11]). Let F : C → D be a functor
of ∞-categories. If F is a left adjoint (resp. is a right adjoint) then F preserves
colimits (resp. preserves limits).

Moreover, it turns out that limits and colimits in Cat∞ can be computed in terms
of straightenings and unstraightenings. For this, we use the following results as a
black box.

https://stacks.math.columbia.edu/tag/001I
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Lemma 4.4 (Pointwise Limits; [Wag24, Lem. 6.12]). Let C,D, I be quasicategories
such that D has all I-indexed limits. Then the functor quasicategory Fun(C,D) has
all I-indexed limits and

evx : Fun(C,D) −→ Fun({x},D)

preserves I-indexed colimits.

Lemma 4.5 ([Wag24, Lem. 6.15]). Let C be a quasicategory. The functor Cat∞ →
Ani by D 7→ MorCat∞(C,D) = coreFun(C,D) preserves pullbacks.

Limits and colimits in Cat∞ are given by straightenings and unstraightenings as
follows.

Proposition 4.6 ([Wag24, Lem. 6.14]). Let F : I → Cat∞ be a functor with
coCartesian unstraightening p : E → I. Then

colimF ≃ E[{coCartesian edges}−1] and limF = FuncoCartI (I,E).

Furthermore, if F is Ani-valued, then the limit and colimit are given byIe. the limit is
given by coCartesian
sections of p, resp.
the localization at all
non-isomorphisms.

colimF ≃ |E| and limF = MorCat∞/I
(I,E).

Proof Outline. Considering the case of colimits, let F be Ani-valued. Under the
straightening-unstraightening correspondence, we have

MorFun(I,Ani)(F, const(−)) ≃ MorLFib(I)(E,Un(const(−)))

but noting that the unstraightening of a constant functor const(x) is the projection
{x} × I → I. As such we can compute

MorLFib(I)(E,−× I) ≃ MorCat∞/I
(E,−× I) (i)

≃ MorCat∞(E,−× I)×MorCat∞ (E,I) {p} (ii)

≃ (MorCat∞(E,−)×MorCat∞(E, I))×MorCat∞ (E,I) {p} (iii)

≃ MorCat∞(E,−) (iv)

where

(i) The inclusion LFib(I) → Cat∞/I is fully faithful. This is reasonable because
being a left fibration is a property. (Cf. the sidebar of (2.3)).

(ii) Pointwise computation of colimits in functor categories Lemma 4.4 allow us
to reduce this to a result on homotopy pullbacks shown last week [Wag24,
Corr. 5.15].

(iii) This uses the product-map adjunction in combination with the fact that
forgetting to animae preserves pullbacks Lemma 4.5.

(iv) The fibered product MorCat∞(E, I)×MorCat∞ (E,I) {p} is just {p}.
Now localization at non-isomorphisms is left adjoint to the inclusion as in Exam-
ple 3.4 and |E| satisfies the desired universal property, giving the claim. ■
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5. Excursus: Some Handwaving with Slices
This is indeed
the way the au-
thor first learned
about (co)limits in
∞-categories.

This section largely follows Hopkins’ course (and associated non-public notes)
[Hop23] on which the author’s course notes [—23] are based. This is also how things
were originally defind by Joyal. Some of these constructions will also be revisited in
the proof of the adjoint functor theorem.

Let us recall the slice construction of [Wag24, §2.11]. The slice under quasicate-
gory is given by the Cartesian square I am playing a bit

fast and loose here.
See the discussion in
Wagner’s notes, but
everything is justi-
fied via the equiva-
lences between slices
and “fat slices.”

Cx/ Arr(C)

{x} × C C× C.

(s,t)

Dually, the slice over quasicategory is given by the Cartesian square

C/x Arr(C)

C× {x} C× C.

(s,t)

Slice constructions allow us to define initial and terminal objects.

Definition 5.1 (Initial/Terminal Objects). Let C be a quasicategory. An object
x ∈ C is initial (resp. terminal) if Cx/ → C (resp. C/x → C) is a trivial fibration. Cx/ → C,C/x → C

are left and right
fibrations, resp.

Also recall that
trivial fibrations are
the right notions
of uniqueness in
∞-land.

This should be believable because commutativity of the diagram gives structure
maps x → y in Cx/ or y → x in C/x for fixed x.

Lemma 5.2. Let C be a quasicategory. The full subcategory spanned by initial or
final objects are either empty or contractible animae.

Now let’s suppose we can construct slices not just over individual objects of a
quasicategory but over the image of a functor I → C – ie. that exhibit an I-indexed
diagram as initial or final presented as a system of maps to/from objects of the
diagram, compatible with morphisms in the diagram – and moreover that this is in
fact a quasicategory. This can be done by writing down explicit simplicial sets.

To wit, for F : I → C a functor of quasicategories,

• CI/ is the quasicategory of cocones parametrizing objects under the I-indexed
diagram.

• C/I is the quasicategory of cones parametrizing objects over the I-indexed
diagram.

This allows us to very easily define limits and colimits.

Definition 5.3 ((Co)limit). Let F : I → C be a functor of quasicategories. A
colimit of F is an initial object of the slice quasicategory CI/ (resp. a limit of F is
a final object of the slice quasicategory C/I).
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